Menu
团队简介

智能推荐技术团队(IRT)依托上海大学计算机学院,主要负责研究智能化决策算法及其应用,包括但不限于:

推荐系统、医疗智能体、多智能体协同机制

智能推荐技术团队是一个比较年轻、有活力的团队。团队负责人朱能军博士是上海大学计算机学院副教授、硕导;担任CCF协同计算专委执委、YOCSEF上海学术秘书等学术职务;曾在美国罗格斯大学、百度研究院访问交流;在TOIS、TKDD、SIGIR、WSDM、AAAI、IJCAI、ICDM等高水平期刊和会议上发表论文40篇左右;在CCSCW22和CCSCW23连续获得最佳论文;主持国自然青年、上海市启明星计划、上大青年英才启航计划等项目,参与国家重点研发计划、国自然等项目多项;主导设计和研发的医疗智能决策辅助系统和乳腺癌病例数据库目前服务于瑞金等40多家医院和中心。朱能军老师也是上海市一流本科课程团队成员。

团队欢迎有志于从事这方面研究的同学加入!欢迎联系朱能军老师。

成果列表

近些年,团队在重要国际期刊(包括TOIS、TKDE、TKDD、TOMM、MLJ等)和重要国际会议(如AAAI、IJCAI、WSDM、ICDM等)发表多篇论文,部分论文如下:


期刊
Nengjun Zhu, Yuqiang Ren, Yu Liu, Hang Yu, Xinzhi Wang, and Xiangfeng Luo, MMGCL: Multi-Scale and Multi-Channel Graph Contrastive Learning for Flight Anomaly Detection, Knowledge-Based Systems, 2025, SCI, IF7.6, 中科院1区
Qiqi Cai, Jian Cao, and Guandong Xu, and Nengjun Zhu, Distributed Recommendation Systems: Survey and Research Directions, ACM Transactions on Information Systems, 2024,43(1), SCI, IF6, CCF-A刊
Zixuan Yuan, Junmin Liu, Haoyi Zhou, Denghui Zhang, Hao Liu, Nengjun Zhu, and Hui Xiong, LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading, IEEE Transactions On Knowledge And Data Engineering (TKDE), 2023, 36(11), 6547-6559, SCI, IF8.9, 中科院2区, CCF-A刊
Nengjun Zhu, Jian Cao*, Xinjiang Lu, Chuanren Liu, Hao Liu, Yanyan Li, Xiangfeng Luo, and Hui Xiong, Predicting a Person's Next Activity Region with a Dynamic Region-Relation-Aware Graph Neural Network, ACM Transactions on Knowledge Discovery from Data (TKDD), 2022, 16(2), 116: 1-23, SCI, IF4.4, 中科院3区,CCF-B刊
Nengjun Zhu, Jian Cao, Xinjiang Lu, Hui Xiong, Learning a Hierarchical Intent Model for Next-Item Recommendation, ACM Transactions on Information Systems (TOIS). 2021. vol. 40, no. 2, article 38, pp. 1-28, CCF-A期刊
Nengjun Zhu, Jian Cao, Kunwei Shen, Xiaosong Chen, and Siji Zhu, A Decision Support System with Intelligent Recommendation for Multi-Disciplinary Medical Treatment, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM). ACM, 2020. vol. 16, no. 1s, 33, pp1-23, CCF-B期刊
会议
Nengjun Zhu*, Lingdan Sun, Qi Zhang, Jian Cao, Hang Yu, DFRec: Dual Fluctuation Modeling of Multi-level Intent Evolution for Next-Item Recommendation, Proceedings of the AAAI, 2026, CCF-A会
Nengjun Zhu*, Zhiyu Zhang, Chenmeijin Liang, Jian Cao, Siji Zhu*, and Xiao Wei, Trusted Collective Learning for Conflictive Multi-View Decision-Making, Proceedings of the IEEE International Conference on Data Mining (ICDM), 2025, CCF-B会,最佳论文提名
Yang Gu, Jian Cao*, Hengyu You, Nengjun Zhu*, and Shiyou Qian, ADELA: Accelerating Evolutionary Design of Machine Learning Pipelines with the Accompanying Surrogate Model, Proceedings of the AAAI, 2025, 16915-16923, EI, CCF-A会
Jianqi Gao, Jiao Cao, and Nengjun Zhu, Promoting Knowledge Base Question Answering by Directing LLMs to Generate Task-relevant Logical Forms, Proceedings of the AAAI, 2025, CCF-A会
Shouyu Chen, Tangwei Ye, Laizhong Yuan, Qi Zhang, Ke Liu, Usman Naseem, Ke Sun, Nengjun Zhu, and Liang Hu, VR-DiagNet: Medical Volumetric and Radiomic Diagnosis Networks with Interpretable Clinician-like Optimizing Visual Inspection, Proceedings of the 32nd ACM International Conference on Multimedia (MM), 2024, 10459-10467, EI, CCF-A会
Nengjun Zhu*, Jieyun Huang, Jian Cao, Liang Hu, Zixuan Yuan, and Huanjing Gao, R2V-MIF: Rule-to-Vector Contrastive Learning and Multi-channel Information Fusion for Therapy Recommendation, Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2024, 2634-2641, EI, CCF-A会
Haoran Xin, Xinjiang Lu, Nengjun Zhu, Tong Xu, Dejing Dou, and Hui Xiong, CAPTOR: A Crowd-Aware Pre-Travel Recommender System for Out-of-Town Users, Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), 2022, 1174-1184, EI, CCF-A会
Nengjun Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao Ying, and Hui Xiong, Sequential Modeling of Hierarchical User Intention and Preference for Next-item Recommendation, in Proceedings of the ACM International Conference on Web Search and Data Mining (WSDM). ACM, 2020. pp807-815, CCF-B会,清华推荐A会
合作单位